- bundle of curves
- мат.пучок кривых
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Canonical bundle — In mathematics, the canonical bundle of a non singular algebraic variety V of dimension n is the line bundle which is the nth exterior power of the cotangent bundle Ω on V. Over the complex numbers, it is the determinant bundle of holomorphic n… … Wikipedia
Ample line bundle — In algebraic geometry, a very ample line bundle is one with enough global sections to set up an embedding of its base variety or manifold M into projective space. An ample line bundle is one such that some positive power is very ample. Globally… … Wikipedia
Moduli of algebraic curves — In algebraic geometry, a moduli space of (algebraic) curves is a geometric space (typically a scheme or an algebraic stack) whose points represent isomorphism classes of algebraic curves. It is thus a special case of a moduli space. Depending on… … Wikipedia
Double tangent bundle — In mathematics, particularly differential topology, the double tangent bundle or the second tangent bundle refers to the tangent bundle (TTM,πTTM,TM) of the total space TM of the tangent bundle (TM,πTM,M) of a smooth manifold M [1]. The second… … Wikipedia
Stable vector bundle — In mathematics, a stable vector bundle is a vector bundle that is stable in the sense of geometric invariant theory. They were defined by harvtxt|Mumford|1963table vector bundles over curvesA bundle W over an algebraic curve (or over a Riemann… … Wikipedia
Vector bundles on algebraic curves — In mathematics, vector bundles on algebraic curves may be studied as holomorphic vector bundles on compact Riemann surfaces. which is the classical approach, or as locally free sheaves on algebraic curves C in a more general, algebraic setting… … Wikipedia
Nagata's conjecture on curves — In mathematics, the Nagata conjecture on curves, named after Masayoshi Nagata, governs the minimal degree required for a plane algebraic curve to pass though a collection of very general points with prescribed multiplicity. Nagata arrived at the… … Wikipedia
Indifference curve — In microeconomic theory, an indifference curve is a graph showing different bundles of goods, each measured as to quantity, between which a consumer is indifferent. That is, at each point on the curve, the consumer has no preference for one… … Wikipedia
Jet (mathematics) — In mathematics, the jet is an operation which takes a differentiable function f and produces a polynomial, the truncated Taylor polynomial of f , at each point of its domain. Although this is the definition of a jet, the theory of jets regards… … Wikipedia
Differentiable manifold — A nondifferentiable atlas of charts for the globe. The results of calculus may not be compatible between charts if the atlas is not differentiable. In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp… … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia